Explosion from the early universe illuminates secret black hole

This artistic impression illustrates a new black hole that was discovered through gravitational lensing using light from an ancient cosmic explosion.  (Image credit: Carl Knox, OzGrav)

Light coming from an explosion in the early universe has illuminated a black hole that astronomers think could expand their understanding of how the celestial objects form. 

Three billion years ago, a gamma-ray burst (known as GRB 950830) exploded out into the universe. In 1995, astronomers observed the event, essentially peering “back in time” with the BATSE (Burst And Transient Source Experiment ) high-energy astrophysics experiment on the Compton Gamma-Ray Observatory, which was launched in 1991 on the space shuttle Atlantis. Now, astronomers used the light coming from the ancient explosion to detect an intermediate-mass black hole (IMBH), which are elusive and challenging to spot. 

The light coming from the gamma-ray burst allowed the team to use a phenomenon called gravitational lensing to find an IMBH. This finding supports the existence of IMBHs, as they are so hard to detect that some scientists question whether or not they’re even real. This work also sheds light on how different types of black holes might form and how supermassive black holes (SMBH) could get so massive. 

Related: No escape: Dive into a black hole (infographic)

Intermediate-mass black holes are just what they sound like: celestial middleweights. The objects are fairly massive: larger than stellar black holes (SBH) but not as massive as SMBH, perhaps clocking in at between 100 and 100,000 times the mass of our sun. 

However, these midsize black holes are especially challenging to detect “because they are smaller and less active than supermassive black holes; they do not have readily available sources of fuel, nor as strong a gravitational pull to draw stars and other cosmic material which would produce telltale X-ray glows,” according to NASA

“If a black